These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelial-mesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma. Author: He Z, Yi J, Liu X, Chen J, Han S, Jin L, Chen L, Song H. Journal: Mol Cancer; 2016 Jun 29; 15(1):51. PubMed ID: 27358073. Abstract: BACKGROUND: Dysregulation of microRNAs (miRNAs) have been demonstrated to contribute to carcinogenesis. MiR-143-3p has been identified to function as a tumor suppressor in several tumors, but the role of miR-143-3p in esophageal squamous cell carcinoma (ESCC) has not been intensively investigated. Our aim was to evaluate the potential role of miR-143-3p in the progression of ESCC. METHODS: The expression levels of miR-143-3p and QKI-5 protein were measured in 80 resected ESCC tumor specimens and the clinicopathological significance of these levels determined. We also investigated the role of miR-143-3p in the regulation of QKI-5 expression in ESCC cell lines both in vivo and in vitro. RESULTS: MiR-143-3p levels were decreased in ESCC clinical samples and low expression of miR-143-3p was significantly associated with poor prognosis in ESCC patients. Ectopic expression of miR-143-3p suppressed proliferation and induced apoptosis in ESCC cells both in vivo and in vitro. Ectopic expression of miR-143-3p also reduced the metastatic potential of cells by selectively regulating epithelial-mesenchymal transition regulatory proteins. Furthermore, QKI-5 isoform was upregulated in ESCC tissues and was a direct target of miR-143-3p. Lastly, re-introduction of QKI-5 expression abrogated the inhibitory effects of miR-143-3p on ESCC cell proliferation and motility. CONCLUSIONS: Our results demonstrate that miR-143-3p acts as a tumor-suppressor by targeting QKI-5 in ESCC, suggesting that miR-143-3p is a potential therapy for the treatment of ESCC.[Abstract] [Full Text] [Related] [New Search]