These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inositol pyrophosphates inhibit synaptotagmin-dependent exocytosis. Author: Lee TS, Lee JY, Kyung JW, Yang Y, Park SJ, Lee S, Pavlovic I, Kong B, Jho YS, Jessen HJ, Kweon DH, Shin YK, Kim SH, Yoon TY, Kim S. Journal: Proc Natl Acad Sci U S A; 2016 Jul 19; 113(29):8314-9. PubMed ID: 27364007. Abstract: Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate (5-IP7) are highly energetic inositol metabolites containing phosphoanhydride bonds. Although inositol pyrophosphates are known to regulate various biological events, including growth, survival, and metabolism, the molecular sites of 5-IP7 action in vesicle trafficking have remained largely elusive. We report here that elevated 5-IP7 levels, caused by overexpression of inositol hexakisphosphate (IP6) kinase 1 (IP6K1), suppressed depolarization-induced neurotransmitter release from PC12 cells. Conversely, IP6K1 depletion decreased intracellular 5-IP7 concentrations, leading to increased neurotransmitter release. Consistently, knockdown of IP6K1 in cultured hippocampal neurons augmented action potential-driven synaptic vesicle exocytosis at synapses. Using a FRET-based in vitro vesicle fusion assay, we found that 5-IP7, but not 1-IP7, exhibited significantly higher inhibitory activity toward synaptic vesicle exocytosis than IP6 Synaptotagmin 1 (Syt1), a Ca(2+) sensor essential for synaptic membrane fusion, was identified as a molecular target of 5-IP7 Notably, 5-IP7 showed a 45-fold higher binding affinity for Syt1 compared with IP6 In addition, 5-IP7-dependent inhibition of synaptic vesicle fusion was abolished by increasing Ca(2+) levels. Thus, 5-IP7 appears to act through Syt1 binding to interfere with the fusogenic activity of Ca(2+) These findings reveal a role of 5-IP7 as a potent inhibitor of Syt1 in controlling the synaptic exocytotic pathway and expand our understanding of the signaling mechanisms of inositol pyrophosphates.[Abstract] [Full Text] [Related] [New Search]