These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hypoxia suppresses myocardial survival pathway through HIF-1α-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression. Author: Feng CC, Lin CC, Lai YP, Chen TS, Marthandam Asokan S, Lin JY, Lin KH, Viswanadha VP, Kuo WW, Huang CY. Journal: Growth Factors; 2016 Aug; 34(3-4):73-86. PubMed ID: 27366871. Abstract: The HIF-1α transcriptional factor and the BH-3 only protein BNIP3 are known to play fundamental roles in response to hypoxia. The objective of this research is to investigate the molecular mechanisms and the correlation of HIF-1α, BNIP3 and IGFBP-3 in hypoxia-induced cardiomyocytes injuries. Heart-derived H9c2 cells and neonatal rat ventricular myocytes (NRVMs) were incubated in normoxic or hypoxic conditions. Hypoxia increased HIF-1α expression and activated the downstream BNIP3 and IGFBP-3 thereby triggered mitochondria-dependent apoptosis. Moreover, IGF1R/PI3K/Akt signaling was attenuated by HIF-1α-dependent IGFBP-3 expression to enhance hypoxia-induced apoptosis. Autophagy suppression with 3-methyladenine or siATG5 or siBeclin-1 significantly decreased myocardial apoptosis under hypoxia. Knockdown of FoxO3a or BNIP3 significantly abrogated hypoxia-induced autophagy and mitochondria-dependent apoptosis. Moreover, prolonged-hypoxia induced HIF-1α stimulated BNIP3 and enhanced IGFBP-3 activation to inhibit IGF1R/PI3K/Akt survival pathway and mediate mitochondria-dependent cardiomyocyte apoptosis. HIF-1α and FoxO3a blockage are sufficient to annul the change of excessive hypoxia of hearts.[Abstract] [Full Text] [Related] [New Search]