These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tolerance to methylnitrosourea-induced DNA damage is associated with 6-thioguanine resistance in CHO cells. Author: Aquilina G, Zijno A, Moscufo N, Dogliotti E, Bignami M. Journal: Carcinogenesis; 1989 Jul; 10(7):1219-23. PubMed ID: 2736715. Abstract: Clones (13 and B) of O6-methylguanine-DNA-methyl-transferase-proficient (MT+) CHO cells showing different levels of resistance to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) but similar MT activity, were found to be sensitive to methyl methanesulphonate and resistant to N-methyl-N-nitrosourea (MNU). A 2.8-fold increase in resistance to MNU-induced cytotoxicity was observed in clone 13 and a 16-fold increase in clone B. A slight increase in survival (1.5-fold) after N-ethyl-N-nitrosourea treatment was observed in clone B. These data indicate that the resistant phenotype is specific for agents that preferentially methylate O atoms in DNA. The survival of MNNG- and MNU-resistant clones as well as of the parental CHO cell line was analysed after exposure to purine analogues substituted in different positions, 8-azaguanine (8-AG), 8-azaadenine (8-AA) and 6-thioguanine (6-TG). A 6-fold increase in resistance to 6-TG was found in clone B, although the hypoxanthine guanine phosphoribosyltransferase gene is functional in these cells. The same cytotoxicity was found in all the lines after treatment with 8-AG and 8-AA. These data are in agreement with the previous observation that clone 13 and clone B belong to two different classes of resistance, clone 13 resistance being explained by MT levels. The finding that clone B is cross-resistant to 6-TG is discussed in the light of a mechanism of tolerance to modifications at specific positions of guanine.[Abstract] [Full Text] [Related] [New Search]