These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wideband reflectance in Down syndrome. Author: Soares JC, Urosas JG, Calarga KS, Pichelli TS, Limongi SC, Shahnaz N, Carvallo RM. Journal: Int J Pediatr Otorhinolaryngol; 2016 Aug; 87():164-71. PubMed ID: 27368466. Abstract: OBJECTIVE: Children with Down syndrome (DS) have a high incidence of middle ear disorders and congenital abnormalities of the external, middle and inner ear. Energy reflectance (ER), a wideband acoustic immittance (WAI) measurement parameter, can measure the sound energy reflected or absorbed in the ear canal over a wider range of frequencies more efficiently and faster than conventional single-tone 226 Hz tympanometry. The aim of the present study was to compare the WAI measurements of children with DS with those of typically developing, normal-hearing children according to their tympanometric findings. METHODS: Four groups of children with Down syndrome (age range: 2 years and 4 months to 16 years and 3 months; mean age: 8.5 yr) with normal tympanograms (19 ears), flat tympanograms (13 ears), mild negative pressure tympanograms (6 ears between -100 and -199 daPa at the admittance peak) and severe negative pressure tympanograms (4 ears at -200 daPa or lower at the admittance peak) were assessed. All findings were compared with data obtained from 21 ears of a healthy control group (age range: 3 years and 1 month to 13 years and 11 months; mean age: 7.9 yr). The subjects underwent tympanometry with a 226-Hz probe tone frequency and ER measurements along the 200-6,000 Hz range with a chirp stimulus using the Middle-Ear Power Analyzer (MEPA3 - HearID) by Mimosa Acoustics (Champaign, IL), software, version 3.3 [38]. RESULTS: Statistically significant differences were observed in the ER curves for some comparisons between the studied groups. There was also a negative correlation between the static acoustic admittance at the tympanic membrane level and ER measured with a chirp stimulus at 500 and 1,000 Hz. The discriminant analysis technique, which used a chirp stimulus at 1,000 and 1,600 Hz to classify the participants' data based on ER values, achieved a correct classification rate of 59.52% for participants with DS. CONCLUSION: While groups with abnormal middle ear status, as indicated by tympanometry, showed higher ER values compared to the DS tymp A group and the control group, similar reflectance curves were observed between control group and the DS tymp A group. WAI shows promise as a clinical diagnostic tool in investigating the impact of middle ear disorders in DS group. However, further research is required to investigate this issue in narrower age range group and a larger sample size.[Abstract] [Full Text] [Related] [New Search]