These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anticancer drug candidate CBL0137, which inhibits histone chaperone FACT, is efficacious in preclinical orthotopic models of temozolomide-responsive and -resistant glioblastoma.
    Author: Barone TA, Burkhart CA, Safina A, Haderski G, Gurova KV, Purmal AA, Gudkov AV, Plunkett RJ.
    Journal: Neuro Oncol; 2017 Feb 01; 19(2):186-196. PubMed ID: 27370399.
    Abstract:
    BACKGROUND: The survival rate for patients with glioblastoma (GBM) remains dismal. New therapies targeting molecular pathways dysregulated in GBM are needed. One such clinical-stage drug candidate, CBL0137, is a curaxin, small molecules which simultaneously downregulate nuclear factor-kappaB (NF-ĸB) and activate p53 by inactivating the chromatin remodeling complex, Facilitates Chromatin Transcription (FACT). METHODS: We used publicly available databases to establish levels of FACT subunit expression in GBM. In vitro, we evaluated the toxicity and effect of CBL0137 on FACT, p53, and NF-ĸB on U87MG and A1207 human GBM cells. In vivo, we implanted the cells orthotopically in nude mice and administered CBL0137 in various dosing regimens to assess brain and tumor accumulation of CBL0137, its effect on tumor cell proliferation and apoptosis, and on survival of mice with and without temozolomide (TMZ). RESULTS: FACT subunit expression was elevated in GBM compared with normal brain. CBL0137 induced loss of chromatin-unbound FACT, activated p53, inhibited NF-ĸB-dependent transcription, and was toxic to GBM cells. The drug penetrated the blood-brain barrier and accumulated in orthotopic tumors significantly more than normal brain tissue. It increased apoptosis and suppressed proliferation in both U87MG and A1207 tumors. Intravenous administration of CBL0137 significantly increased survival in models of early- through late-stage TMZ-responsive and -resistant GBM, with a trend toward significantly increasing the effect of TMZ in TMZ-responsive U87MG tumors. CONCLUSION: CBL0137 targets GBM according to its proposed mechanism of action, crosses the blood-brain barrier, and is efficacious in both TMZ-responsive and -resistant orthotopic models, making it an attractive new therapy for GBM.
    [Abstract] [Full Text] [Related] [New Search]