These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Partial Amelioration of Synaptic and Cognitive Deficits by Inhibiting Cofilin Dephosphorylation in an Animal Model of Alzheimer's Disease.
    Author: Deng Y, Wei J, Cheng J, Zhong P, Xiong Z, Liu A, Lin L, Chen S, Yan Z.
    Journal: J Alzheimers Dis; 2016 Jun 28; 53(4):1419-32. PubMed ID: 27372643.
    Abstract:
    The loss of synaptic structure and function has been linked to the cognitive impairment of Alzheimer's disease (AD). Dysregulation of the actin cytoskeleton, which plays a key role in regulating the integrity of synapses and the transport of synaptic proteins, has been suggested to contribute to the pathology of AD. In this study, we found that glutamate receptor surface expression and synaptic function in frontal cortical neurons were significant diminished in a familial AD (FAD) model, which was correlated with the reduction of phosphorylated cofilin, a key protein regulating the dynamics of actin filaments. Injecting a cofilin dephosphorylation inhibitory peptide to FAD mice led to the partial rescue of the surface expression of AMPA and NMDA receptor subunits, as well as the partial restoration of AMPAR- and NMDAR-mediated synaptic currents. Moreover, the impaired working memory and novel object recognition memory in FAD mice were partially ameliorated by injections of the cofilin dephosphorylation inhibitory peptide. These results suggest that targeting the cofilin-actin signaling holds promise to mitigate the physiological and behavioral abnormality in AD.
    [Abstract] [Full Text] [Related] [New Search]