These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Crystallization and Properties of NADPH-Dependent L-Sorbose Reductase from Gluconobacter melanogenus IFO 3294.
    Author: Adachi O, Ano Y, Moonmangmee D, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K.
    Journal: Biosci Biotechnol Biochem; 1999; 63(12):2137-43. PubMed ID: 27373916.
    Abstract:
    NADPH-Dependent L-sorbose reductase (SORD, synonimously NADP-dependent D-srobitol dehydrogenase) was purified and crystallized for the first time from the cytosolic fraction of Gluconobacter melanogenus IFO 3294. The enzyme catalyzed oxidoreduction between D-sorbitol and L-sorbose in the presence of NADP or NADPH. Affinity chromatography by a Blue-dextran Sepharose 4B column was effective for purifying the enzyme giving about 770-fold purification with an overall yield of more than 50%. The crystalline enzyme showed a single sedimentation peak in analytical ultracentrifugation, giving an apparent sedimentation constant of 3.8 s. Gel filtration on a Sephadex G-75 column gave the molecular mass of 60 kDa to the enzyme, which dissociated into 30 kDa subunit on SDS-PAGE, indicating that the enzyme is composed of 2 identical subunits. Reduction of L-sorbose to D-sorbitol predominated in the presence of NADPH with the optimum pH of 5.0-7.0. Oxidation of D-sorbitol to L-sorbose was observed in the presence of NADP at the optimum pH of 7.0-9.0. The relative rate of L-sorbose reduction was more than seven times higher to that of D-sorbitol oxidation. NAD and NADH were inert for both reactions. D-Fructose reduction in the presence of NADPH did not occur with SORD. Since the reaction rate in L-sorbose reduction highly predominated over D-sorbitol oxidation over a wide pH range, the enzyme could be available for direct enzymatic measurement of L-sorbose. Even in the presence of a large excess of D-glucose and other substances, oxidation of NADPH to NADP was highly specific and stoichiometric to the L-sorbose reduced. Judging from the enzymatic properties, SORD would contribute to the intracellular assimilation of L-sorbose incorporated from outside the cells where L-sorbose is accumulated in huge amounts in the culture medium.
    [Abstract] [Full Text] [Related] [New Search]