These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amide proton transfer imaging of brain tumors using a self-corrected 3D fast spin-echo dixon method: Comparison With separate B0 correction.
    Author: Togao O, Keupp J, Hiwatashi A, Yamashita K, Kikuchi K, Yoneyama M, Honda H.
    Journal: Magn Reson Med; 2017 Jun; 77(6):2272-2279. PubMed ID: 27385636.
    Abstract:
    PURPOSE: To assess the quantitative performance of three-dimensional (3D) fast spin-echo (FSE) Dixon amide proton transfer (APT) imaging of brain tumors compared with B0 correction with separate mapping methods. METHODS: Twenty-two patients with brain tumors (54.2 ± 18.7 years old, 12 males and 10 females) were scanned at 3 Tesla (T). Z-spectra were obtained at seven different frequency offsets at ±3.1 ppm, ± 3.5 ppm, ± 3.9 ppm, and -1560 ppm. The scan was repeated three times at +3.5 ppm with echo shifts for Dixon B0 mapping. The APT image corrected by a three-point Dixon-type B0 map from the same scan (3D-Dixon) or a separate B0 map (2D-separate and 3D-separate), and an uncorrected APT image (3D-uncorrected) were generated. We compared the APT-weighted signals within a tumor obtained with each 3D method with those obtained with 2D-separate as a reference standard. RESULTS: Excellent agreements and correlations with the 2D-separate were obtained by the 3D-Dixon method for both mean (ICC = 0.964, r = 0.93, P < 0.0001) and 90th-percentile (ICC = 0.972, r = 0.95, P < 0.0001) APT-weighted signals. These agreements and correlations for 3D-Dixon were better than those obtained by the 3D-uncorrected and 3D-separate methods. CONCLUSION: The 3D FSE Dixon APT method with intrinsic B0 correction offers a quantitative performance that is similar to that of established two-dimensional (2D) methods. Magn Reson Med 77:2272-2279, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
    [Abstract] [Full Text] [Related] [New Search]