These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cry1Ac toxin induces macrophage activation via ERK1/2, JNK and p38 mitogen-activated protein kinases. Author: Torres-Martínez M, Rubio-Infante N, García-Hernández AL, Nava-Acosta R, Ilhuicatzi-Alvarado D, Moreno-Fierros L. Journal: Int J Biochem Cell Biol; 2016 Sep; 78():106-115. PubMed ID: 27394658. Abstract: The Cry1Ac toxin from Bacillus thuringiensis is used commercially as a bio-insecticide and is expressed in transgenic plants that are used for human and animal consumption. Although it was originally considered innocuous for mammals, the Cry1Ac toxin is not inert and has the ability to induce mucosal and systemic immunogenicity. Herein, we examined whether the Cry1Ac toxin promotes macrophage activation and explored the signalling pathways that may mediate this effect. Treatment of primary and RAW264.7 macrophages with the Cry1Ac toxin resulted in upregulation of the costimulatory molecules CD80, CD86 and ICOS-L and enhanced production of nitric oxide, the chemokine MCP-1 and the proinflammatory cytokines TNF-α and IL-6. Remarkably, the Cry1Ac toxin induced phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK1/2, JNK and p38 and promoted nuclear translocation of nuclear factor-kappa B (NF-κB) p50 and p65. p38 and ERK1/2 MAPKs were involved in this effect, as indicated by the Cry1Ac-induced upregulation of CD80 and IL-6 and TNF-α abrogation by the p38 MAPK inhibitor SB203580. Furthermore, treatment the MEK1/2 kinase inhibitor PD98059 blocked increases in MCP-1 secretion and augmented Cry1Ac-induced ICOS-L upregulation. These data demonstrate the capacity of the Cry1Ac toxin to induce macrophage activation via the MAPK and NF-κB pathways.[Abstract] [Full Text] [Related] [New Search]