These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Karyotype analysis in large sample cases from Shenyang Women's and Children's hospital: a study of 16,294 male infertility patients.
    Author: Gao M, Pang H, Zhao YH, Hua J, Tong D, Zhao H, Liu Y, Zhao Y, Zhang M, Yan XJ, Chen H, Ma HP, Jin TY, Dong SL.
    Journal: Andrologia; 2017 May; 49(4):. PubMed ID: 27397756.
    Abstract:
    To explore that it is necessary to routinely detect chromosomes in infertile patients, we investigated peripheral blood lymphocyte karyotype in 16,294 male infertile patients in the north-east of China and analysed the incidence and type of chromosomal anomaly and polymorphism. G-banding karyotype analysis of peripheral blood lymphocytes was performed in 16,294 cases. Semen analysis was performed three times in all the men. PCR and FISH confirmed the presence of the SRY gene. The rate of chromosomal anomaly in the 16,294 male infertile patients was 4.15% (677/16,294). The rates of chromosomal anomaly were 0.24% in normal semen group, 12.6% in light oligoasthenospermia group, 4.7% in moderate-to-severe oligoasthenospermia group and 9.59% in azoospermia group. There are two male infertile patients with 45,X chromosome karyotype. One X male patient had confirmed the presence of the SRY gene and FISH analysis demonstrated its location on the p arm of chromosome 13. The other X male patient had not found SRY gene in its whole-genome DNA. Meanwhile, sperm motility is slightly oligo-asthenozoospermic at the age of 35-39 and nearly azoospermic at the age of 40-45. As the rates of chromosomal anomaly are 0.24% and 12.6% even in normal semen group and light oligoasthenospermia group, the rates of chromosomal polymorphism are 5.36% and 25.51% in normal semen group and light oligoasthenospermia group, respectively; it is necessary to explore peripheral blood lymphocyte karyotype in all infertile couples. We mentioned that Y, 1, 2, 9 and 12 chromosomes were quite important about male infertility. These findings demonstrate that autosomal retention of SRY can be submicroscopic and emphasise the importance of PCR and FISH in the genetic workup of the monosomic X male. At the same time, it suggested that male infertility might be related to meiotic disturbances with spermatogenetic arrest in Y-autosome translocations, which could result in infertility by reduction of sperm production. Last but not least, ageing is one of the factors that could reduce sperm motility and quality.
    [Abstract] [Full Text] [Related] [New Search]