These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of MAPK and PI3K/AKT signaling pathways on Malabaricone-A induced cytotoxicity in U937, a histiocytic lymphoma cell line.
    Author: Manna A, De Sarkar S, De S, Bauri AK, Chattopadhyay S, Chatterjee M.
    Journal: Int Immunopharmacol; 2016 Oct; 39():34-40. PubMed ID: 27398613.
    Abstract:
    Intrinsically cancer cells have higher basal levels of reactive oxygen species (ROS), which when augmented by pro-oxidants such as Malabaricone-A (MAL-A) triggers apoptotic cell death, secondary to 'turning on' of the apoptosis related cell signaling pathways. The effects of MAL-A upon key inflammation related signaling molecules were evaluated by western blotting in U937, a histiocytic lymphoma derived cell line. The impact of inhibitors of the pro-apoptotic MAPK and anti-apoptotic PI3K/AKT signaling pathways upon MAL-A induced cytotoxicity and generation of ROS was evaluated by a cell viability assay and flow cytometry respectively in two hematopoietic cell lines, U937 and MOLT3. MAL-A enhanced phosphorylation of the components of the pro-apoptotic pathway, namely ASK1, p38 and JNK. Alongside, MAL-A decreased the phosphorylation of AKT and mTOR. The cytotoxicity of MAL-A was attenuated by inhibitors of p38 and JNK, whereas its cytotoxic potential was enhanced in the presence of a PI3K/AKT inhibitor. Similarly, MAL-A mediated generation of ROS was decreased by inhibitors of p38MAPK and JNK, whereas the PI3K/AKT inhibitor potentiated its generation of ROS. Taken together, MAL-A mediated its cytotoxicity by enhanced generation of ROS via modulation of the apoptosis related cellular signaling pathways and tilting the balance towards a pro-apoptotic scenario. This was achieved via an up-regulation of MAPK (p38 and JNK) along with down-regulation of the PI3K/AKT/mTOR pathway indicating that manipulation of these pathways by compounds such as MAL-A are promising therapeutic targets, worthy of future pharmacological consideration.
    [Abstract] [Full Text] [Related] [New Search]