These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Voltage-sensitive calcium flux into bovine chromaffin cells occurs through dihydropyridine-sensitive and dihydropyridine- and omega-conotoxin-insensitive pathways.
    Author: Rosario LM, Soria B, Feuerstein G, Pollard HB.
    Journal: Neuroscience; 1989; 29(3):735-47. PubMed ID: 2739907.
    Abstract:
    The fluorescent Ca2+ indicator FURA-2 was used to characterize the depolarization-related intracellular Ca2+ signalling process in bovine adrenal chromaffin cells. Depolarization with high K+ (10-65 mM) gave rise to a very rapid increase in intracellular free Ca2+ concentration, which subsequently decayed slowly towards a "plateau". The size of this initial increase varied sigmoidally with the calculated membrane potential, the relationship being described well by a Boltzmann distribution function for a transition between two states (transition potential, -23 mV). A dihydropyridine calcium channel agonist [(+)202-791, 1 microM] raised intracellular free Ca2+ concentration further in the presence of 30 mM K+, and it enhanced the initial intracellular Ca2+ response to depolarization. Voltage-sensitive calcium channels in chromaffin cells are believed to include the L-type. Several dihydropyridine calcium channel antagonists [(-)202-791, nifedipine, nitrendipine; 1-5 microM], known to be active on L-type channels, caused only modest inhibition of K+ -induced increase in intracellular free Ca2+ concentration: c. 50% (at 30 mM K+) and 25% (at 40-70 mM K+). In addition, omega-conotoxin GVIA (1-10 microM), a blocker of neuronal N- and L-type calcium channels, reduced the initial increase in intracellular free Ca2+ concentration only slightly at 55 mM K+. Further, the dihydropyridine-insensitive component of the intracellular Ca2+ signal was also insensitive to omega-conotoxin, which was otherwise quite active in a central nervous rat in vivo preparation Gd3+ (40 microM), a potent calcium antagonist in the chromaffin cell, blocked the intracellular Ca2+ response to depolarization. When added at different times after K+ stimulation, however, Gd3+ reduced intracellular free Ca2+ concentration to control levels along a slow time course of several minutes. Similar results were obtained when EGTA was added to reduce extracellular Ca2+ concentration to sub-nanomolar levels, in the presence of high K+. We conclude that bovine chromaffin cells are equipped with at least two different classes of voltage-dependent calcium channels, only one of which is likely to be the L-type channel. We also propose that depolarization, in addition to stimulating Ca2+ influx, may also lead to enhancement of Ca2+ release from an intracellular store.
    [Abstract] [Full Text] [Related] [New Search]