These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lysine-specific proteolytic activity responsible for forsythia detaching factor modification. Author: Onishi H, Ro M, Suzuki T, Ishii M, Otsuka H, Yatabe K, Hayashi J, Tatsumi J, Shin K. Journal: Arch Oral Biol; 2016 Nov; 71():24-30. PubMed ID: 27399273. Abstract: OBJECTIVES: The objective of the present study was to clarify the lysine-specific proteolytic activity derived from periodontal pathogens responsible for Forsythia detaching factor (FDF) modification. DESIGN: The activity responsible for FDF modification in Tannerella forsythia and Porphyromonas gingivalis were evaluated by colorimetric assay using Ac-Arg-Ala-Lys-p-nitroaniline as a substrate. FDF modification in T. forsythia and P. gingivalis were evaluated by Western blotting using recombinant FDF (rFDF) as a substrate. Furthermore, the activity in GCF of 20 patients with periodontitis and 10 healthy subjects was also evaluated by colorimetric assay. Bacteria in subgingival plaque were detected using polymerase chain reaction. RESULTS: The activity of both bacteria in colorimetric assay were 21.35 unit (P. gingivalis) and 3.61 unit (T. forsythia), respectively. Western blot analysis revealed that P. gingivalis was found to efficiently degrade rFDF and T. forsythia partially cleaved rFDF. The activity in GCF from patients with periodontitis (clinically healthy sites: CH, deep bleeding sites: DB and deep non-bleeding sites: DNB) was significantly higher than those from healthy subjects (healthy sites: H). Among the patients with periodontitis, the activity from CH was significantly lower than those from DB and DNB. T. forsythia was detected in 68.4% of DNB, in 78.4% of DB and in none of CH. P. gingivalis was detected in 63.2% of DNB, in 84.0% of DB and in 10.5% of CH. No bacterium was detected in healthy subjects. CONCLUSION: The lysine-specific proteolytic activity responsible for FDF modification correlates with the presence of major periodontal pathogens.[Abstract] [Full Text] [Related] [New Search]