These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular Epidemiology of a Vancomycin-Intermediate Heteroresistant Staphylococcus epidermidis Outbreak in a Neonatal Intensive Care Unit. Author: Chong J, Quach C, Blanchard AC, Poliquin PG, Golding GR, Laferrière C, Lévesque S. Journal: Antimicrob Agents Chemother; 2016 Oct; 60(10):5673-81. PubMed ID: 27401579. Abstract: Coagulase-negative staphylococci (CoNS) have become the leading cause of bloodstream infections (BSIs) in intensive care units (ICUs), particularly in premature neonates. Vancomycin-intermediate heteroresistant CoNS (hVICoNS) have been identified as sources of BSIs worldwide, and their potential to emerge as significant pathogens in the neonatal ICU (NICU) remains uncertain. This study describes the molecular epidemiology of an outbreak of vancomycin-heteroresistant (hV) Staphylococcus epidermidis central-line-associated BSI (CLABSI) in a single tertiary care NICU and compares it to a second tertiary care NICU that had not been associated with an outbreak. Between November 2009 and April 2014, 119 S. epidermidis CLABSIs were identified in two tertiary care NICUs in Quebec, Canada. Decreased vancomycin susceptibility was identified in about 88% of all collected strains using Etest methods. However, discrepancies were found according to the Etest and population analysis profiling-area under the concentration-time curve (PAP-AUC) methods used. All strains were susceptible to linezolid, and a few isolates were nonsusceptible to daptomycin. Great genetic diversity was observed within the collection, with 31 pulsed-field gel electrophoresis (PFGE) patterns identified. The outbreak strains were all determined to be heteroresistant to vancomycin and were polyclonal. The study identified two major clones, PFGE patterns E and G, which were found in both NICUs across the 5-year study period. This suggests the persistence of highly successful clones that are well adapted to the hospital environment. hV S. epidermidis seems more common than currently realized in the NICU, and certain hV S. epidermidis clones can become endemic to the NICU. The reservoirs for these clones remain unknown at this time, and identification of the reservoirs is needed to better understand the impact of hV S. epidermidis in the NICU and to inform infection prevention strategies. In addition, there is a need to investigate and validate hV determination protocols for different species of CoNS.[Abstract] [Full Text] [Related] [New Search]