These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: (54)Mn Radiotracers Demonstrate Continuous Dissolution and Reprecipitation of Vernadite (δ-MnO2) during Interaction with Aqueous Mn(II). Author: Elzinga EJ. Journal: Environ Sci Technol; 2016 Aug 16; 50(16):8670-7. PubMed ID: 27403960. Abstract: (54)Mn radiotracers were used to assess Mn atom exchange between aqueous Mn(II) and vernadite (δ-MnO2) at pH 5.0. Continuous solid-liquid redistribution of (54)Mn atoms occurred, and systems are near isotopic equilibrium after reaction for 3 months. Despite this extensive exchange, X-ray diffraction and X-ray absorption spectroscopy data showed no major changes in vernadite bulk mineralogy. These results demonstrate that the vernadite-Mn(II) interface is dynamic, with the substrate undergoing continuous dissolution and reprecipitation mediated by aqueous Mn(II) without observable impacts on its mineralogy. Interfacial redox reactions between adsorbed Mn(II) and solid-phase Mn(IV) and Mn(III) are proposed as the main drivers of this process. Interaction between aqueous Mn(II) and structural Mn(III) likely involves interfacial electron transfer coupled with Mn atom exchange. The exchange of aqueous Mn(II) and solid-phase Mn(IV) is more complex and is proposed to result from coupled interfacial comproportionation-disproportionation reactions, where electron transfer from adsorbed Mn(II) to lattice Mn(IV) produces transient Mn(III) species that disproportionate to regenerate aqueous Mn(II) and structural Mn(IV). These findings provide further evidence of the importance of Mn(II)(aq)-MnO2(s) interactions and the attendant production of transient Mn(III) intermediates to the geochemical functioning of phyllomanganates in environments undergoing Mn redox cycling.[Abstract] [Full Text] [Related] [New Search]