These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On the other hand: Increased cortical activation to human versus mechanical hands in infants.
    Author: Biondi M, Boas DA, Wilcox T.
    Journal: Neuroimage; 2016 Nov 01; 141():143-153. PubMed ID: 27417344.
    Abstract:
    There is a large body of work demonstrating that infants are sensitive to the distinction between human and mechanical entities from the early months of life, and have different expectations for the way these entities move and interact. The current work investigates the extent to which the functional organization of the immature brain reflects these early emerging sensitivities. Infants aged 8months watched two kinds of hands (human or mechanical) engage in two kinds of events (one with a functional outcome and one without). Using functional near-infrared spectroscopy (fNIRS), we assessed hemodynamic activation in the left and right temporal and temporal-occipital cortex in response to these events. The neuroimaging data revealed a significantly greater increase in activation in the right middle-posterior temporal cortex to events executed by the human than the mechanical hand; the event in which the hand engaged (function or non-function) did not significantly influence hemodynamic responses. In comparison, the left middle-temporal cortex showed significantly greater activation to events executed by the human than mechanical hand, but only when the events were functionally relevant. That is, the left middle-posterior temporal cortex responded selectively to human (as compared to mechanical) agents, but only in the context of functionally relevant actions on objects. These results reveal that the immature brain is functionally specialized to support infants' processing of human and non-human agents as distinct entities. These results also shed light on the cognitive and cortical mechanisms that guide infants' learning about agentive action and object function.
    [Abstract] [Full Text] [Related] [New Search]