These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Light transmittance and surface roughness of a feldspathic ceramic CAD-CAM material as a function of different surface treatments.
    Author: Ural Ç, Duran İ, Evmek B, Kavut İ, Cengiz S, Yuzbasioglu E.
    Journal: BMC Oral Health; 2016 Jul 15; 17(1):16. PubMed ID: 27418002.
    Abstract:
    BACKGROUND: The aim of the present study was to determine the effect of different surface treatments on light transmission of aesthetic feldspathic ceramics used in CAD-CAM chairside restorations. METHODS: Forty eight feldspatic ceramic test specimens were prepared from prefabricated CAD-CAM blocks by using a slow speed diamond saw. Test specimens were prepared and divided into 4 groups (n = 12). In the control group, no surface treatments were applied on the feldspathic ceramic surfaces. In the hydrofluoric acid group, the bonding surfaces of feldspathic ceramics were etched with 9.5 % hydrofluoric acid. In the sandblasting group the feldspathic ceramic surfaces were air-abraded with 30-μm alumium oxide (Al2O3) particles and Er:YAG laser was used to irradiate the ceramic surfaces. The incident light power given by the LED device and the transmitted light power through each ceramic sample was registered using a digital LED radiometer device. Each polymerization light had a light guide with 8-mm-diameter tips. Light transmission of feldspathic ceramic samples was determined by placing it on the radiometer and irradiating the specimen for 10 s at the highest setting for each light polymerization. All specimens were coated with gold using a sputter coater and examined under a field emission scanning electron microscope. Surface roughness measurement each group were evaluated with 3D optical surface and tactile profilometers. RESULTS: One-way ANOVA test results revealed that both surface conditioning method significantly affect the light transmittance (F:412.437; p < 0.001) and the surface roughness values (F:16.386; p < 0.001). Al2O3 and Er-YAG laser application reduced the light transmission significantly (p < 0.05). CONCLUSIONS: The laser and Al2O3 applications reduced the light transmission of 1.5 mm thickness feldspathic ceramic material below the value of 400 mW/cm(2) which is critical limit for safe polymerization.
    [Abstract] [Full Text] [Related] [New Search]