These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Integrated Nanovaccine with MicroRNA-148a Inhibition Reprograms Tumor-Associated Dendritic Cells by Modulating miR-148a/DNMT1/SOCS1 Axis. Author: Liu L, Yi H, Wang C, He H, Li P, Pan H, Sheng N, Ji M, Cai L, Ma Y. Journal: J Immunol; 2016 Aug 15; 197(4):1231-41. PubMed ID: 27421476. Abstract: Immunosuppressive tumor-associated dendritic cells (TADCs) are potential targets for cancer therapy. However, their poor responsiveness to TLR stimulation is a major obstacle for achieving successful cancer immunotherapy. In the current study, we reported a dysregulated miR-148a/DNA methyltransferase (DNMT)1/suppressor of cytokine signaling (SOCS)1 axis as a unique mechanism for dampened TLR stimulation in TADCs. The results showed that aberrantly elevated miR-148a in bone marrow-derived TADC (BM-TADC) abolished polyinosinic-polycytidylic acid (poly I:C) or LPS-induced dendritic cell maturation through directly suppressing DNMT1 gene, which consequently led to the hypomethylation and upregulation of SOCS1, the suppressor of TLR signaling. In contrast, miR-148a inhibitor (miR-148ai) effectively rescued the expression of DNMT1 and decreased SOCS1 in BM-TADCs, thereby recovering their sensitivity to TLR3 or TLR4 stimulation. To further reprogram TADCs in vivo, miR-148ai was coencapsulated with poly I:C and OVA by cationic polypeptide micelles to generate integrated polypeptide micelle/poly I:C (PMP)/OVA/148ai nanovaccine, which was designed to simultaneously inhibit miR-148a and activate TLR3 signaling in TADCs. The immunization of PMP/OVA/148ai nanovaccine not only effectively modulated the miR-148a/DNMT1/SOCS1 axis in the spleen, but also significantly increased mature dendritic cells both in the spleen and in tumor microenvironment. Moreover, PMP/OVA/148ai ameliorated tumor immunosuppression through reducing regulatory T cells and myeloid-derived suppressor cells, thereby leading to potent anticancer immune responses and robust tumor regression with prolonged survival. This study proposes a nanovaccine-based immunogene therapy with the integration of miR-148a inhibition and TLR3 stimulation as a novel therapeutic approach to boost anticancer immunity by reprogramming TADCs in vivo.[Abstract] [Full Text] [Related] [New Search]