These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel Biomimatic Synthesis of ZnO Nanorods Using Egg White (Albumen) and Their Antibacterial Studies. Author: Ahmed F, Arshi N, Jeong YS, Anwar MS, Dwivedi S, Alsharaeh E, Koo BH. Journal: J Nanosci Nanotechnol; 2016 Jun; 16(6):5959-65. PubMed ID: 27427657. Abstract: Zinc oxide (ZnO) is well-recognized as a biocompatible multifunctional material with outstanding properties as well as low toxicity and biodegradability. In this work, a simple and versatile technique was developed to prepare highly crystalline ZnO nanorods by introducing egg white to a bio-inspired approach. X-ray diffraction (XRD) and selected area electron diffraction (SAED) pattern results indicated that the ZnO nanorods have single phase nature with the wurtzite structure. Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) results showed the nanometer dimension of the nanorods. Raman, FTIR, and TGA/DTA analyses revealed the formation of wurtzite ZnO. The antibacterial properties of ZnO nanorods were investigated using both Gram-positive and Gram-negative microorganisms. These studies demonstrate that ZnO nanorods have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. Survival ratio of bacteria decreased with increasing powder concentration, i.e., increase in antibacterial activity. The antibacterial activity of the ZnO nanorods toward Pseudomonas aeruginosa was stronger than that of Escherichia coli and Staphylococcus aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Overall, the experimental results suggest that ZnO nanorods could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections. This research introduces a new concept to synthesize ZnO nanorods by using egg white as a biological template for various applications including food science, animal science, biochemistry, microbiology and medicine.[Abstract] [Full Text] [Related] [New Search]