These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Baicalein, a Constituent of Scutellaria baicalensis, Reduces Glutamate Release and Protects Neuronal Cell Against Kainic Acid-Induced Excitotoxicity in Rats.
    Author: Chang Y, Lu CW, Lin TY, Huang SK, Wang SJ.
    Journal: Am J Chin Med; 2016; 44(5):943-62. PubMed ID: 27430911.
    Abstract:
    Interest in the health benefits of flavonoids, particularly their effects on neurodegenerative disease, is increasing. This study evaluated the role of baicalein, a flavonoid compound isolated from the traditional Chinese medicine Scutellaria baicalensis, in glutamate release and glutamate neurotoxicity in the rat hippocampus. In the rat hippocampal nerve terminals (synaptosomes), baicalein inhibits depolarization-induced glutamate release, and this phenomenon is prevented by chelating the extracellular Ca[Formula: see text] ions and blocking presynaptic Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel activity. In slice preparations, whole cell patch-clamp experiments revealed that baicalein reduced the frequency of miniature excitatory postsynaptic currents, without affecting their amplitude. In a kainic acid rat model, intraperitoneally administering baicalein to rats before the kainic acid intraperitoneal injection substantially attenuated kainic acid-induced neuronal cell death, c-Fos expression, and the activation of the mammalian target of rapamycin in the hippocampus. This study is the first to demonstrate that the natural compound baicalein inhibits glutamate release from hippocampal nerve terminals, and executes a protective action against kainic acid-induced excitotoxicity in vivo. The findings enhance the understanding of baicalein's action in the brain, and suggest that this natural compound is valuable for treating brain disorders related to glutamate excitotoxicity.
    [Abstract] [Full Text] [Related] [New Search]