These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Target organs of the Manila clam Ruditapes philippinarum for studying metal accumulation and biomarkers in pollution monitoring: laboratory and in-situ transplantation experiments. Author: Won EJ, Kim KT, Choi JY, Kim ES, Ra K. Journal: Environ Monit Assess; 2016 Aug; 188(8):478. PubMed ID: 27450372. Abstract: To characterize the target organs of the Manila clam Ruditapes philippinarum for use in environmental study, the accumulation of trace metals and three biomarkers was measured in different organs. Exposure with Cu and Pb carried out under laboratory conditions revealed a linear uptake of metals throughout the experimental period in each tissue. In particular, significant increase was observed in gills and mantle. The increase of intracellular reactive oxygen species showed the great potential of gills as a target tissue for both Cu and Pb exposure. The highest activity of glutathione S-transferase and their relative increase in activity were also observed in gills. Metallothionein-like protein levels, however, increased greatly in the digestive gland and mantle during Cu and Pb exposure, respectively, although all tissues, except the foot, showed significant changes after 24 h of metal exposure. In the field study, the highest concentration of metals was recorded in the gills and mantle, accounting for over 50 % of the total accumulated metal in all sites. Additionally, Cu and Pb increased significantly in these two organs, respectively. However, the order of accumulation rate in laboratory exposure was not concomitant with those of the lab-based study, suggesting that different routes of metal uptake and exposure duration induce distinct partitioning of metals and regulating system in R. philippinarum. These series of exposure studies demonstrated that gills, mantle, and digestive gland in R. philippinarum are potential target tissues in environmental monitoring study using metal concentrations and biomarkers.[Abstract] [Full Text] [Related] [New Search]