These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular modeling and cytotoxicity of diffractaic acid: HP-β-CD inclusion complex encapsulated in microspheres. Author: Silva CV, Barbosa JA, Ferraz MS, Silva NH, Honda NK, Rabello MM, Hernandes MZ, Bezerra BP, Cavalcanti IM, Ayala AP, Santos NP, Santos-Magalhães NS. Journal: Int J Biol Macromol; 2016 Nov; 92():494-503. PubMed ID: 27451026. Abstract: In this pioneer study, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was used to improve the solubility of the diffractaic acid (DA) via inclusion complex (DA:HP-β-CD). Subsequently, DA:HP-β-CD was incorporated into poly-ε-caprolactone (PCL) microspheres (DA:HP-β-CD-MS). Microspheres containing DA (DA-MS) or DA:HP-β-CD (DA:HP-β-CD-MS) were prepared using the multiple W/O/W emulsion-solvent evaporation technique. The phase-solubility diagram of DA in HP-β-CD (10-50mM) showed an AL type curve with a stability constant K1:1=821M-1. 1H NMR, FTIR, X-ray diffraction and thermal analysis showed changes in the molecular environment of DA in DA:HP-β-CD. The molecular modeling approach suggests a guest-host complex formation between the carboxylic moiety of both DA and the host (HP-β-CD). The mean particle size of the microspheres were ∅DA-MS=5.23±1.65μm and ∅DA:HP-β-CD-MS=4.11±1.39μm, respectively. The zeta potential values of the microspheres were ζDA-MS=-7.85±0.32mV and ζDA:HP-β-CD-MS=-6.93±0.46mV. Moreover, the encapsulation of DA:HP-β-CD into microspheres resulted in a more slower release (k2=0.042±0.001; r2=0.996) when compared with DA-MS (k2=0.183±0.005; r2=0.996). The encapsulation of DA or DA:HP-β-CD into microspheres reduced the cytotoxicity of DA (IC50=43.29μM) against Vero cells (IC50 of DA-MS=108.48μM and IC50 of DA:HP-β-CD-MS=142.63μM).[Abstract] [Full Text] [Related] [New Search]