These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influences of Sr-Incorporated TiO2 Layer on the Photovoltaic Properties of Dye-Sensitized Solar Cells.
    Author: Kim ES, Kim DH, Lee SJ, Han YS.
    Journal: J Nanosci Nanotechnol; 2016 Mar; 16(3):2760-4. PubMed ID: 27455704.
    Abstract:
    Effects of a mixed overlayer composed of TiO2 and TiSrO3 on the performance of dye-sensitized solar cells (DSSCs) were investigated. The surface of TiO2 photoelectrode formed on F-doped SnO2 (FTO) was modified by soaking it in a TiCl4:SrCl2 mixed aqueous solution with various molar ratios and then calcining to produce the TiCl4:SrCl2-treated TiO2 photoelectrode (Ti:Sr-TiO2/FTO). The highest power conversion efficiency (PCE) was obtained from DSSC with Ti:Sr(7:3)-TiO2/FTO, which was prepared from the mixed solution with the molar ratio of 7:3 (TiOl4:SrCl2). An enhancement in short-circuit photocurrent (J(sc)) and open-circuit voltage (V(oc)) of DSSC with Ti:Sr(7:3)-TiO2/FTO was achieved, compared to those of the reference device with Ti:Sr(10:0)-TiC2/FTO (i.e., TiO2-coated TiO2/FTO). The incorporation of the mixed overlayer on the nanoporous TiO2 photoelectorde led to an improvement in the electron collection efficiency by a prolonged electron lifetime, thereby increasing the J(sc) value. The increase in V(oc) value of the device with Ti:Sr(7:3)-TiO2/FTO was due to the suppression of the charge recombination between injected electrons and I3(-) ions.
    [Abstract] [Full Text] [Related] [New Search]