These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Maximal workload but not peak oxygen uptake is decreased during immersed incremental exercise at cooler temperatures. Author: Fujimoto T, Sasaki Y, Wakabayashi H, Sengoku Y, Tsubakimoto S, Nishiyasu T. Journal: Eur J Appl Physiol; 2016 Sep; 116(9):1819-27. PubMed ID: 27456478. Abstract: PURPOSE: This study investigated the effects of water temperature on cardiorespiratory responses and exercise performance during immersed incremental cycle exercise until exhaustion. METHODS: Ten healthy young men performed incremental cycle exercise on a water cycle ergometer at water temperatures (T w) of 18, 26 and 34 °C. Workload was initially set at 60 W and was increased by 20 W every 2 min for the first four levels and then by 10 W every minute until the subject could no longer continue. RESULTS: During submaximal exercise (60-120 W), [Formula: see text] was greater at T w = 18 °C than at 26 or 34 °C. Maximal workload was lower at T w = 18 °C than at 26 or 34 °C [T w = 18 °C: 138 ± 16 (SD) W, T w = 26 °C: 157 ± 16 W, T w = 34 °C: 156 ± 18 W], whereas [Formula: see text]O2peak did not differ among the three temperatures [T w = 18 °C: 3156 ± 364 (SD) ml min(-1), T w = 26 °C: 3270 ± 344 ml min(-1), T w = 34 °C: 3281 ± 268 ml min(-1)]. Minute ventilation ([Formula: see text]) and tidal volume (V T) during submaximal exercise were higher at T w = 18 °C than at 26 or 34 °C, while respiratory frequency (f R) did not differ with respect to T w. CONCLUSION: Peak workload during immersed incremental cycle exercise is lower in cold water (18 °C) due to the higher [Formula: see text] during submaximal exercise, while the greater [Formula: see text] in cold water was due to a larger V T.[Abstract] [Full Text] [Related] [New Search]