These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro IFN-α release from IFN-α- and pegylated IFN-α-loaded poly(lactic-co-glycolic acid) and pegylated poly(lactic-co-glycolic acid) nanoparticles. Author: Feczkó T, Fodor-Kardos A, Sivakumaran M, Haque Shubhra QT. Journal: Nanomedicine (Lond); 2016 Aug; 11(16):2029-34. PubMed ID: 27462975. Abstract: AIM: Interferon alpha (IFN-α) controlled release of nanoparticles was investigated under in vitro conditions. MATERIALS & METHODS: IFN-α and pegylated IFN-α (PEG-IFN-α) were encapsulated by poly(lactic-co-glycolic acid) (PLGA) and pegylated PLGA (PEG-PLGA) copolymers using double emulsion solvent evaporation method. RESULTS: The size of resulting four nanoparticles (IFN-α in poly(lactic-co-glycolic acids), IFN-α in poly(lactic-co-glycolic acid)-polyethylene glycol, PEG-IFN-α in poly(lactic-co-glycolic acids) and PEG-IFN-α in poly(lactic-co-glycolic acid)-polyethylene glycol) was below 130 nm diameter. IFN-α encapsulation efficiency of the nanoparticles was between 78 and 91%. CONCLUSION: The in vitro drug release studies conducted in phosphate-buffered saline and human plasma highlighted the role of incubation medium on the IFN release from the nanoparticles. The PEG-IFN-α in poly(lactic-co-glycolic acid)-polyethylene glycol was the most promising nanoparticle among the four formulations because of its remarkably constant release in both phosphate-buffered saline and plasma.[Abstract] [Full Text] [Related] [New Search]