These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of tooth pulp deafferentation on nociceptive and nonnociceptive neurons of the feline trigeminal subnucleus caudalis (medullary dorsal horn). Author: Hu JW, Sessle BJ. Journal: J Neurophysiol; 1989 Jun; 61(6):1197-206. PubMed ID: 2746320. Abstract: 1. Effects of deafferentation of the tooth pulps of the posterior mandibular teeth were studied in single neurons recorded in the ipsilateral subnucleus caudalis of the trigeminal (V) spinal tract nucleus of adult cats and kittens. The functional properties of neurons in each anesthetized animal were determined electro-physiologically in a series of microelectrode penetrations of the subnucleus. 2. The more than 800 neurons investigated could be subdivided on the basis of their cutaneous mechanoreceptive field properties into low-threshold mechanoreceptive (LTM) neurons, wide dynamic range (WDR) neurons, or nociceptive-specific (NS) neurons. Comparisons of neuronal properties were made between control (intact) cats and 7-15 day deafferented cats studied in a blind design, as well as groups of longer term deafferented cats, and kittens undergoing a "natural" deafferentation as a result of exfoliation of primary teeth. 3. There was no apparent change in the somatotopic pattern of organization of the subnucleus in the kittens and pulp-deafferented cats and no statistically significant differences were noted between kittens and control cats in any property except for alterations in the incidence of spontaneously active neurons. 4. Limited but statistically significant alterations were noted in some of the neuronal properties in the deafferented cats. These changes were especially apparent in the LTM neurons. The incidence of spontaneous activity was significantly decreased in the neurons of most long-term deafferented groups of cats. In the 7-15 day deafferented group, significantly more LTM neurons had a mechanoreceptive field involving all three divisions of the V nerve, and there was a significant increase in the incidence of LTM neurons activated by electrical stimulation of intraoral sites. Mechanosensitive neurons responsive only to tap stimuli were found only in the deafferented groups of cats. 5. These alterations in caudalis contrast with previous reports claiming marked hyperexcitability of caudal V brain stem neurons as a consequence of deafferentation and implicating such effects in the development of pain. However, some of the changes are in general not inconsistent with deafferentation-induced changes reported in spinal somatosensory neurons and with the pulp deafferentation-induced changes that we have recently documented in LTM neurons of subnucleus oralis of the V spinal tract nucleus of adult cats.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]