These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of exposure to phthalate esters and DINCH in urine and nails from a Norwegian study population. Author: Giovanoulis G, Alves A, Papadopoulou E, Cousins AP, Schütze A, Koch HM, Haug LS, Covaci A, Magnér J, Voorspoels S. Journal: Environ Res; 2016 Nov; 151():80-90. PubMed ID: 27466754. Abstract: Phthalate esters (PEs) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) used as additives in numerous consumer products are continuously released into the environment, leading to subsequent human exposure which might cause adverse health effects. The human biomonitoring approach allows the detection of PEs and DINCH in specific populations, by taking into account all possible routes of exposure (e.g. inhalation, transdermal and oral) and all relevant sources (e.g. air, dust, personal care products, diet). We have investigated the presence of nine PE and two DINCH metabolites and their exposure determinants in 61 adult residents of the Oslo area (Norway). Three urine spots and fingernails were collected from each participant according to established sampling protocols. Metabolite analysis was performed by LC-MS/MS. Metabolite levels in urine were used to back-calculate the total exposure to their corresponding parent compound. The primary monoesters, such as monomethyl phthalate (MMP, geometric mean 89.7ng/g), monoethyl phthalate (MEP, 104.8ng/g) and mono-n-butyl phthalate (MnBP, 89.3ng/g) were observed in higher levels in nails, whereas the secondary bis(2-ethylhexyl) phthalate (DEHP) and DINCH oxidative metabolites were more abundant in urine (detection frequency 84-100%). The estimated daily intakes of PEs and DINCH for this Norwegian population did not exceed the established tolerable daily intake and reference doses, and the cumulative risk assessment for combined exposure to plasticizers with similar toxic endpoints indicated no health concerns for the selected population. We found a moderate positive correlation between MEP levels in 3 urine spots and nails (range: 0.56-0.68). Higher frequency of personal care products use was associated with greater MEP concentrations in both urine and nail samples. Increased age, smoking, wearing plastic gloves during house cleaning, consuming food with plastic packaging and eating with hands were associated with higher levels in urine and nails for some of the metabolites. In contrast, frequent hair and hand washing was associated with lower urinary levels of monoisobutyl phthalate (MiBP) and mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), respectively.[Abstract] [Full Text] [Related] [New Search]