These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Maternal dietary vitamin D carry-over alters offspring growth, skeletal mineralisation and tissue mRNA expressions of genes related to vitamin D, calcium and phosphorus homoeostasis in swine. Author: Amundson LA, Hernandez LL, Laporta J, Crenshaw TD. Journal: Br J Nutr; 2016 Sep; 116(5):774-87. PubMed ID: 27480125. Abstract: Maternal dietary vitamin D carry-over effects were assessed in young pigs to characterise skeletal abnormalities in a diet-induced model of kyphosis. Bone abnormalities were previously induced and bone mineral density (BMD) reduced in offspring from sows fed diets with inadequate vitamin D3. In a nested design, pigs from sows (n 23) fed diets with 0 (-D), 8·125 (+D) or 43·750 (++D) µg D3/kg from breeding through lactation were weaned and, within litter, fed nursery diets arranged as a 2×2 factorial design with 0 (-D) or 7·0 (+D) µg D3/kg, each with 95 % (95P) or 120 % (120P) of P requirements. Selected pigs were euthanised before colostrum consumption at birth (0 weeks, n 23), weaning (3 weeks, n 22) and after a growth period (8 weeks, n 185) for BMD, bone mechanical tests and tissue mRNA analysis. Pigs produced by +D or ++D sows had increased gain at 3 weeks (P<0·05), and at 8 weeks had increased BMD and improved femur mechanical properties. However, responses to nursery diets depended on maternal diets (P<0·05). Relative mRNA expressions of genes revealed a maternal dietary influence at birth in bone osteocalcin and at weaning in kidney 24-hydroxylase (P<0·05). Nursery treatments affected mRNA expressions at 8 weeks. Detection of a maternal and nursery diet interaction (P<0·05) provided insights into the long-term effects of maternal nutritional inputs. Characterising early stages of bone abnormalities provided inferences for humans and animals about maternal dietary influence on offspring skeletal health.[Abstract] [Full Text] [Related] [New Search]