These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wnt3a is critical for endothelial progenitor cell-mediated neural stem cell proliferation and differentiation. Author: Du Y, Zhang S, Yu T, Du G, Zhang H, Yin Z. Journal: Mol Med Rep; 2016 Sep; 14(3):2473-82. PubMed ID: 27484039. Abstract: The present study aimed to determine whether co-culture with bone marrow‑derived endothelial progenitor cells (EPCs) affects the proliferation and differentiation of spinal cord-derived neural stem cells (NSCs), and to investigate the underlying mechanism. The proliferation and differentiation of the NSCs were evaluated by an MTT cell proliferation and cytotoxicity assay, and immunofluorescence, respectively. The number of neurospheres and the number of β‑tubulin III‑positive cells were detected by microscopy. The wingless‑type MMTV integration site family, member 3a (Wnt3a)/β-catenin signaling pathway was analyzed by western blot analysis and reverse transcription‑quantitative polymerase chain reaction to elucidate the possible mechanisms of EPC‑mediated NSC proliferation and differentiation. The results revealed that co‑culture with EPCs significantly induced NSC proliferation and differentiation. In addition, co‑culture with EPCs markedly induced the expression levels of Wnt3a and β‑catenin and inhibited the phosphorylation of glycogen synthase kinase 3β (GSK‑3β). By contrast, Wnt3a knockdown using a short hairpin RNA plasmid in the EPCs reduced EPC‑mediated NSC proliferation and differentiation, accompanied by inhibition of the EPC‑mediated expression of β‑catenin, and its phosphorylation and activation of GSK‑3β. Taken together, the findings of the present study demonstrated that Wnt3a was critical for EPC‑mediated NSC proliferation and differentiation.[Abstract] [Full Text] [Related] [New Search]