These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biodegradation Kinetics of 1,4-Dioxane in Chlorinated Solvent Mixtures.
    Author: Zhang S, Gedalanga PB, Mahendra S.
    Journal: Environ Sci Technol; 2016 Sep 06; 50(17):9599-607. PubMed ID: 27486928.
    Abstract:
    This study investigated the impacts of individual chlorinated solvents and their mixtures on aerobic 1,4-dioxane biodegradation by Pseudonocardia dioxanivorans CB1190. The established association of these co-occurring compounds suggests important considerations for their respective biodegradation processes. Our kinetics and mechanistic studies demonstrated that individual solvents inhibited biodegradation of 1,4-dioxane in the following order: 1,1-dichloroethene (1,1-DCE) > cis-1,2-diochloroethene (cDCE) > trichloroethene (TCE) > 1,1,1-trichloroethane (TCA). The presence of 5 mg L(-1) 1,1-DCE completely inhibited 1,4-dioxane biodegradation. Subsequently, we determined that 1,1-DCE was the strongest inhibitor of 1,4-dioxane biodegradation by bacterial pure cultures exposed to chlorinated solvent mixtures as well as in environmental samples collected from a site contaminated with chlorinated solvents and 1,4-dioxane. Inhibition of 1,4-dioxane biodegradation rates by chlorinated solvents was attributed to delayed ATP production and down-regulation of both 1,4-dioxane monooxygenase (dxmB) and aldehyde dehydrogenase (aldH) genes. Moreover, increasing concentrations of 1,1-DCE and cis-1,2-DCE to 50 mg L(-1) respectively increased 5.0-fold and 3.5-fold the expression of the uspA gene encoding a universal stress protein. In situ natural attenuation or enhanced biodegradation of 1,4-dioxane is being considered for contaminated groundwater and industrial wastewater, so these results will have implications for selecting 1,4-dioxane bioremediation strategies at sites where chlorinated solvents are present as co-contaminants.
    [Abstract] [Full Text] [Related] [New Search]