These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemotherapy resistance and metastasis-promoting effects of thyroid hormone in hepatocarcinoma cells are mediated by suppression of FoxO1 and Bim pathway.
    Author: Chi HC, Chen SL, Cheng YH, Lin TK, Tsai CY, Tsai MM, Lin YH, Huang YH, Lin KH.
    Journal: Cell Death Dis; 2016 Aug 04; 7(8):e2324. PubMed ID: 27490929.
    Abstract:
    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and systemic chemotherapy is the major treatment strategy for late-stage HCC patients. Poor prognosis following chemotherapy is the general outcome owing to recurrent resistance. Recent studies have suggested that in addition to cytotoxic effects on tumor cells, chemotherapy can induce an alternative cascade that supports tumor growth and metastasis. In the present investigation, we showed that thyroid hormone (TH), a potent hormone-mediating cellular differentiation and metabolism, acts as an antiapoptosis factor upon challenge of thyroid hormone receptor (TR)-expressing HCC cells with cancer therapy drugs, including cisplatin, doxorubicin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TH/TR signaling promoted chemotherapy resistance through negatively regulating the pro-apoptotic protein, Bim, resulting in doxorubicin-induced metastasis of chemotherapy-resistant HCC cells. Ectopic expression of Bim in hepatoma cells challenged with chemotherapeutic drugs abolished TH/TR-triggered apoptosis resistance and metastasis. Furthermore, Bim expression was directly transactivated by Forkhead box protein O1 (FoxO1), which was negatively regulated by TH/TR. TH/TR suppressed FoxO1 activity through both transcriptional downregulation and nuclear exclusion of FoxO1 triggered by Akt-mediated phosphorylation. Ectopic expression of the constitutively active FoxO1 mutant, FoxO1-AAA, but not FoxO1-wt, diminished the suppressive effect of TH/TR on Bim. Our findings collectively suggest that expression of Bim is mediated by FoxO1 and indirectly downregulated by TH/TR, leading to chemotherapy resistance and doxorubicin-promoted metastasis of hepatoma cells.
    [Abstract] [Full Text] [Related] [New Search]