These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Underlayer Effect on Perpendicular Magnetic Anisotropy in Co20Fe60B20\MgO Films. Author: Chen PJ, Iunin YL, Cheng SF, Shull RD. Journal: IEEE Trans Magn; 2016 Jul; 52(7):. PubMed ID: 27499549. Abstract: Perpendicular Magnetic Tunneling Junctions (pMTJs) with Ta\CoFeB\MgO have been extensively studied in recent years. However, the effects of the underlayer on the formation of the CoFeB perpendicular magnetic anisotropy (PMA) are still not well understood. Here we report the results of our systematic use of a wide range of elements (Ti, V, Cr, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt and Au) encompassed by columns IVA, VA, VIA, VIIA and VIIIA of the periodic table as the underlayer in a underlayer\Co20Fe60B20\MgO stack. Our goals were to survey more elements which could conceivably create a PMA in CoFeB and thereby to explore the mechanisms enabling these underlayers to enhance or create the PMA. We found underlayer elements having both an outer shell of 4d electrons (Zr, Nb Mo, and Pd) and 5d electrons (Hf, Ta, W, Re, Ir, and Pt) resulted in the development of a PMA in the MgO-capped Co20Fe60B20. Hybridization between the 3d electrons of the Fe or Co (in the Co20Fe60B20) at the interface with the 4d or 5d electrons of the underlayer is thought to be the cause of the PMA development.[Abstract] [Full Text] [Related] [New Search]