These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A molecularly imprinted electrochemiluminescence sensor based on the mimetic enzyme catalytic effect for ultra-trace Ni2+ determination.
    Author: Yang B, Li J, Zhang L, Xu G.
    Journal: Analyst; 2016 Oct 21; 141(20):5822-5828. PubMed ID: 27504506.
    Abstract:
    A novel molecularly imprinted polymer (MIP) electrochemiluminescence (MIP-ECL) sensor was developed for the highly sensitive and selective determination of ultra-trace levels of Ni2+. The complex Ni2+-dimethylglyoxime (Ni-DMG) was chosen as the template molecule to construct the MIP and then acted as a mimetic enzyme to catalyse the oxidisation of luminol to enhance the ECL signal. When the imprinted cavities were occupied by Ni-DMG in the rebinding process, the ECL intensities produced by the luminol-H2O2 ECL system on the MIP-modified electrode surface increased with increased concentration of the Ni-DMG complex. The highly sensitive determination of Ni2+ was achieved through a catalytic reaction. This technique could be used for the quantitative analysis of Ni2+ with concentrations from 3.0 × 10-12 mol L-1 to 6.0 × 10-9 mol L-1. The detection limit was 1.01 × 10-12 mol L-1, which is much lower than that reported previously. In addition, the allowable amounts of interference ions in the MIP-ECL sensor were higher than that in other common molecularly imprinted sensors because of its excellent recognition of 3D cavity-to-complex molecules and ligand-to-metal ions. This method was successfully used to determine Ni2+ in real samples, such as apples, carrots and grapes, and has been proven feasible for practical applications.
    [Abstract] [Full Text] [Related] [New Search]