These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Spatial Distribution of Stable Isotope from the Lakes in Typical Temperate Glacier Region]. Author: Shi XY, Pu T, He YQ, Lu H, Niu HW, Xia DS. Journal: Huan Jing Ke Xue; 2016 May 15; 37(5):1685-91. PubMed ID: 27506020. Abstract: We focused mainly on the spatial variation and influencing factors of hydrogen and oxygen stable isotopes between water samples collected at the surface and different depths in the Lashi Lake in August, 2014. Hydrological supply characteristics of the lake in typical temperate glacier region were discussed. The results showed that the values of δ¹⁸O and δD in the Lashi Lake ranged from -12.98 per thousand to -8.16 per thousand with the mean of -9.75 per thousand and from -99.42 per thousand to -73.78 per thousand with the mean of -82.23 per thousand, respectively. There was a reversed spatial variation between δ¹⁸O and d. Relatively low values of δ¹⁸O with high values of d were found at the edge of the lake where the rivers drained into. Meanwhile, the values of d in the vertical profile varied little with depth, suggesting that the waters mixed sufficiently in the vertical direction. The d values increased at first and then decreased from east to west at different layers, but both increase and decrease exhibited different velocities, which were related to the river distribution, the locality of the lake and environmental conditions etc. River water and atmospheric precipitation were the main recharge sources of the Lashi Lake, and the melt-water of snow and ice might also be the supply resource. The δ¹⁸O values of lake water in glacier region decreased along the elevation (except for Lashi Lake), generally, this phenomenon was called "altitude effect". Moreover, high isotopic values of the lake water from non-glacier region were due to the evaporation effect.[Abstract] [Full Text] [Related] [New Search]