These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Clinical and Genetic Features of Choroideremia in Childhood.
    Author: Khan KN, Islam F, Moore AT, Michaelides M.
    Journal: Ophthalmology; 2016 Oct; 123(10):2158-65. PubMed ID: 27506488.
    Abstract:
    PURPOSE: To review the functional and anatomic characteristics of choroideremia in the pediatric population, aiming to describe the earliest features of the disease and to identify biomarkers useful for monitoring disease progression. DESIGN: Retrospective case series. PARTICIPANTS: Children diagnosed with choroideremia at a single institution. METHODS: Patients were identified using an electronic patient record system. Case notes and retinal imaging (color fundus photography [CFP], spectral-domain [SD] optical coherence tomography [OCT], and fundus autofluorescence [FAF]) then were reviewed. The results of genetic testing also were recorded. MAIN OUTCOME MEASURES: Presenting symptoms, visual acuity, fundus changes (CFP, SD OCT, FAF), and CHM sequencing results. RESULTS: Twenty-nine patients were identified with a mean age at referral of 9 years (range, 3-16 years). CHM mutations were identified in 15 of 19 patients tested. Nyctalopia was the predominant symptom (66%). Five of 29 patients were asymptomatic at presentation. At the final follow-up visit (mean age, 16 years; range, 7-26 years), most maintained excellent visual acuity (mean, 0.98±0.13 decimalized Snellen acuity). The first sign of retinopathy was widespread pigment clumping at the level of the retinal pigment epithelium (RPE). This later evolved to chorioretinal atrophy, most marked in the mid-peripheral retina. Peripapillary atrophy also was an early feature and was progressive in nature. Three different zones of FAF change were visible. Persistence of the inner retinal layers, detected by SD OCT, was visible at presentation in 15 of 27 patients. Subfoveal choroidal thickness decreased with age, whereas central retinal thickness increased over a similar interval. Four patients in whom visual acuity decreased over the follow-up period recorded a reduction in central retinal thickness. CONCLUSIONS: Progressive structural changes occur at a time when central visual function is maintained. Pigmentary changes at the level of the RPE occur early in the disease course. Peripapillary chorioretinal atrophy, central retinal thickness, and subfoveal choroidal thickness are likely to be valuable in monitoring disease progression and should be considered as potential biomarkers in future therapeutic trials.
    [Abstract] [Full Text] [Related] [New Search]