These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous Hydrogen and Methane Production Through Multi-Phase Anaerobic Digestion of Paperboard Mill Wastewater Under Different Operating Conditions.
    Author: Farghaly A, Tawfik A.
    Journal: Appl Biochem Biotechnol; 2017 Jan; 181(1):142-156. PubMed ID: 27507272.
    Abstract:
    Multi-phase anaerobic reactor for H2 and CH4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m3 day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m3 day provided maximum hydrogen yield of 42.76 ± 14.5 ml/g CODremoved and volumetric substrate uptake rate (-rS) of 16.51 ± 4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25 ± 3.3 % and the maximum volatile fatty acid (VFA) yield (YVFA) of 0.21 ± 0.03 g VFA/g COD, confirming that H2 was mainly produced through SCOD conversion. The highest methane yield (18.78 ± 3.8 ml/g CODremoved) and -rS of 21.74 ± 1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m3 day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H2 and CH4 production.
    [Abstract] [Full Text] [Related] [New Search]