These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Temperature on Heteromeric Kv11.1a/1b and Kv11.3 Channels. Author: Mauerhöfer M, Bauer CK. Journal: Biophys J; 2016 Aug 09; 111(3):504-523. PubMed ID: 27508435. Abstract: Kv11.1 channels are crucial in cardiac physiology, and there is increasing evidence of physiological roles of different Kv11 channels outside the heart. The HERG (human Kv11.1a) channel has previously been shown to carry substantially more current at elevated temperatures, and we have now comparably investigated the temperature dependence of neuronal Kv11.3 channels and the more ubiquitous heteromeric Kv11.1a/1b channels. Transiently expressed rat Kv11 channels were studied at 21°C, 30°C, and 35°C. At near-physiological temperature, the maximal sustained outward current density was almost three times the mean value obtained at room temperature for Kv11.1a/1b, and increased by ∼150% for Kv11.3. For both channels, reduced inactivation contributed to the current increase at higher temperature. Elevated temperature moved Kv11.1a/1b isochronal activation curves to more negative potentials, but shifted the potential of half-maximal Kv11.3 channel activation to more depolarized values and reduced its voltage sensitivity. Thus, increased temperature stabilized the open state over the closed state of Kv11.1a/1b channels and exerted the opposite effect on Kv11.3 channel activation. Both Kv11 channels exhibited an overall high temperature sensitivity of most gating parameters, with remarkably high Q10 factors of ∼5 for the rate of Kv11.1a/1b activation. The Q10 factors for Kv11.3 gating were more uniform, but still higher for activation than for inactivation kinetics. The results demonstrate that characteristic differences between Kv11.1a/1b and Kv11.3 determined at room temperature do not necessarily apply to physiological conditions. The data provided here can aid in the design of models that will enhance our understanding of the role of Kv11 currents in excitable cells.[Abstract] [Full Text] [Related] [New Search]