These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spectrophotometric determination of Cu(II) in soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone.
    Author: Admasu D, Reddy DN, Mekonnen KN.
    Journal: Springerplus; 2016; 5(1):1169. PubMed ID: 27512628.
    Abstract:
    Two selective and sensitive reagents, 2-acetylpyridine thiosemicarbazone (2-APT) and 3-acetylpyridine thiosemicarbazone (3-APT) were used for the spectrophotometric determination of Cu(II). Both reagents gave yellowish Cu(II) complex at a pH range of 8.0-10.0. Beer's law was obeyed for Cu(II)-2-APT and Cu(II)-3-APT in the concentration range of 0.16-1.3 and 0.44-1.05 µg/mL, respectively. The molar absorptivity and of Cu(II)-2-APT and Cu(II)-3-APT were 2.14 × 10(4) at 370 nm, and 6.7 × 10(3) L/mol cm at 350 nm, respectively, while the Sandell's sensitivity were 0.009 and 0.029 µg/cm(2) in that order. The correlation coefficient of the standard curves of Cu(II)-2-APT and Cu(II)-3-APT were 0.999 and 0.998, respectively. The detection limit of the Cu(II)-2-APT and Cu(II)-3-APT methods were 0.053 and 0.147 µg/mL, respectively. The results demonstrated that the procedure is precise (relative standard deviation <2 %, n = 10). The method was tested for Cu(II) determination in soil and vegetable samples. Comparisons of the results with those obtained using a flame atomic absorption spectrophotometer for Cu(II) determination also tested the validity of the method using paired sample t test at the 0.05 level showing a good agreement between them.
    [Abstract] [Full Text] [Related] [New Search]