These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development and validation of an Onchocerca ochengi microfilarial hamster model for onchocerciasis drug screens. Author: Mbah GE, Ayiseh RB, Cho-Ngwa F. Journal: BMC Infect Dis; 2016 Aug 11; 16(1):404. PubMed ID: 27515037. Abstract: BACKGROUND: Onchocerciasis, caused by the parasitic nematode, Onchocerca volvulus afflicts some 37 million people worldwide, and is the second leading infectious cause of blindness globally. The only currently recommended drug for treatment of the disease, ivermectin, is only microfilaricidal and has serious adverse effects in individuals co-infected with high loads of Loa loa microfilariae (mf), prompting the search for new and better drugs. Onchocerciasis drug discovery studies have so far been based on in vivo models using Onchocerca species which are not the closest to O. volvulus, and which may therefore, not adequately mimic the natural infection in humans. Therefore, this study was carried out to develop a better drug screening model for onchocerciasis, based on the use of cow-derived O. ochengi, the closest known relative of O. volvulus. METHODS: Mf of O. ochengi were injected subcutaneously at the nape of Syrian hamsters (Mesocricetus auratus) and BALB/c mice. The skin, and especially the earlobes of the animals were examined for mf 15-31 days after infection. For selected model validation, the hamsters were treated with ivermectin at 150 or 600 μg/kg body weight and examined 30 days after infection for mf. For L. loa studies in hamsters, isolated mf were injected intraperitoneally and animal organs were examined on day 26 for mf. RESULTS: The Syrian hamsters were found to be the more permissive to O. ochengi mf as fully viable mf were recovered from them on day 30, compared to BALB/c mice where such mf were recovered on day 15, but not 30. However, both animals were not permissive to L. loa mf even by day 15. Interestingly, more than 50 % of the total O. ochengi mf recovered were from the earlobes. The number of mf injected was directly proportional to the number recovered. Ivermectin at both concentrations tested completely eliminated the O. ochengi mf from the hamsters. CONCLUSION: This study reveals the Syrian hamster as an appropriate small animal model for screening of novel compounds against O. ochengi, the closest known relative of O. volvulus.[Abstract] [Full Text] [Related] [New Search]