These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and functional analysis of invasion associated locus B (IalB) in Bartonella species.
    Author: Deng H, Pang Q, Xia H, Le Rhun D, Le Naour E, Yang C, Vayssier-Taussat M, Zhao B.
    Journal: Microb Pathog; 2016 Sep; 98():171-7. PubMed ID: 27515099.
    Abstract:
    Bartonellosis is caused by the genus Bartonella. Bartonella is widely distributed in the ruminants, cats, dogs, rodents and other mammals including humans. At least 13 species or subspecies of Bartonella are zoonotic, and each species appears to be highly adapted to one or a limited number of reservoir animals in which it is asymptomatic, while it can be transmitted to humans in which a variety of clinical manifestations can be caused. It was reported that Bartonella henselae infection rate among domestic cats was high in nature, making it one of the leading, important, and easily neglected zoonotic diseases. The aims of this study were to identify the expression, localization, immunogenicity and functional mechanism of Bartonella virulence factor IalB. We found that recombinant IalB protein could react with the serum from infected reservoir hosts and anti-IalB polyclonal antibodies could react with different Bartonella species by western blot analysis. According to these results, we proposed that IalB protein and anti-IalB antibodies would be good candidates for diagnosis of Bartonella infection by antigen-based anti-IalB antibodies or antibody-based IalB antigen capture immunoassay, respectively. We also found that IalB had a putative 22-amino-acid signal sequence and little IalB was localized to the outer membrane of Bartonella birtlesii by electron microscopy assay. Incubation with anti-IalB polyclonal antibodies resulted in inhibition of the invasion of mouse erythrocytes by B. birtlesii. According to these results, we propose that IalB could be a secreted protein that facilitates Bartonella entry into erythrocytes. In conclusion, these results improve our understanding of IalB as a candidate for immunodiagnosis and how IalB affects Bartonella-erythrocyte entry.
    [Abstract] [Full Text] [Related] [New Search]