These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Author: Jeon YO, Lee JS, Lee HG. Journal: Colloids Surf B Biointerfaces; 2016 Nov 01; 147():224-233. PubMed ID: 27518454. Abstract: Resveratrol (RES), a polyphenolic compound found in grape skins, is a potent antioxidant with broad health benefits. However, its utilization in food has been limited by its poor water solubility, instability, and low bioavailability. The purpose of this study is to improve the solubility, stability, and cellular uptake of RES by nanoencapsulation using chitosan (CS) and γ-poly (glutamic acid) (γ-PGA). The size of nanoparticles significantly decreases with a decrease in the CS/γ-PGA ratio (p<0.05). The nanoparticle size with CS/γ-PGA ratio of 5 was 100-150nm. The entrapment efficiency and UV-light protection effect significantly increases (p<0.05), with an increase in the CS and γ-PGA concentration. The solubility of RES increases 3.2 and 4.2 times before and after lyophilization by nanoencapsulation, respectively. Compared with non-nanoencapsulated RES, the nanoencapsulated RES tends to maintain its solubility and antioxidant activity during storage. CS/γ-PGA nanoencapsulation was able to significantly enhance the transport of RES across a Caco-2 cell monolayer (p<0.05). The highest cellular uptake was found for nanoparticles prepared with 0.5mg/mL CS and 0.1mg/mL γ-PGA, which showed the highest solubility and antioxidant activity during storage. Therefore, CS/γ-PGA nanoencapsulation is found to be a potentially valuable technique for improving the solubility, stability, and cellular uptake of RES.[Abstract] [Full Text] [Related] [New Search]