These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 400 MHz two-dimensional nuclear Overhauser spectroscopy on anesthetic interaction with lipid bilayer.
    Author: Yokono S, Ogli K, Miura S, Ueda I.
    Journal: Biochim Biophys Acta; 1989 Jul 10; 982(2):300-2. PubMed ID: 2752029.
    Abstract:
    Interaction between a volatile anesthetic, methoxyflurane, and dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was analyzed by nuclear Overhauser effect (NOE) difference spectroscopy and two-dimensional nuclear Overhauser spectroscopy (NOESY). The NOE difference spectra were obtained by selectively irradiating methoxy protons (hydrophobic end) of the anesthetic: a negative nuclear Overhauser effect of -2.94% was observed with the choline methyl protons of DPPC. The NOESY spectra revealed a cross-peak between the anesthetic methoxy protons and the choline methyl protons. A dipole-dipole interaction exists between the hydrophobic end of the anesthetic and the hydrophilic head group of DPPC. No other cross-peaks were observed. The anesthetic orients itself at the membrane/water interface by interacting with the hydrophilic surface of the DPPC membrane, leaving the hydrophilic end of the anesthetic molecule in the aqueous phase. The preferred residence site of dipolar volatile anesthetics is the membrane/water interface.
    [Abstract] [Full Text] [Related] [New Search]