These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Establishment of reference values of α-tocopherol in plasma, red blood cells and adipose tissue in healthy children to improve the management of chylomicron retention disease, a rare genetic hypocholesterolemia.
    Author: Cuerq C, Restier L, Drai J, Blond E, Roux A, Charriere S, Michalski MC, Di Filippo M, Levy E, Lachaux A, Peretti N.
    Journal: Orphanet J Rare Dis; 2016 Aug 12; 11(1):114. PubMed ID: 27520363.
    Abstract:
    BACKGROUND: Chylomicron retention disease (CMRD), a rare genetic hypocholesterolemia, results in neuro-ophtalmologic damages, which can be prevented by high doses of vitamin E during infancy. In these patients, plasma vitamin E concentration is significantly reduced due to defects of chylomicron secretion. Vitamin E in adipose tissue (AT) and red blood cells (RBC) have been proposed as potential relevant biomarkers of vitamin E status but no reference values in children are available. The objectives were (i) to establish age-reference intervals in healthy children for α-tocopherol in plasma, red blood cells (RBC) and adipose tissue (AT) and (ii) to determine the variations of α-tocopherol in patients with CMRD after oral treatment with vitamin E. METHODS: This prospective study included 166 healthy children (1 month - 18 years) and 4 patients with CMRD. Blood and AT were collected in healthy children during a scheduled surgery and in patients before and after a 4-month treatment with α-tocopherol acetate. RESULTS: The reference ranges for α-tocopherol were 11.9 - 30 μmol/L in plasma, 2.0 - 7.8 μmol/L packed cells in RBC and 60 - 573 nmol/g in AT. α-tocopherol levels in plasma correlated with those of RBC (r = 0.31; p < 0.01). In patients with CMRD after 4 months treatment, α-tocopherol concentrations remained less than 70 % of the control values in plasma, increased by 180 % to reach normal values in RBC, and remained stable in the normal range in AT. CONCLUSION: This study establishes pediatric reference intervals for α-tocopherol in plasma, RBC and AT. These values will be beneficial in assessing accurate α-tocopherol status in children and to optimize the monitoring of rare diseases such as CMRD. Our data suggest that RBC α-tocopherol, appears as a relevant biomarker to appreciate the effectiveness of treatment with α-tocopherol in patients with a rare primary hypocholesterolemia. The biopsy of AT could be used at diagnosis to assess the severity of the vitamin E deficiency and periodically after a long duration of vitamin E therapy to assess whether the treatment is effective, based on reference intervals defined in this study.
    [Abstract] [Full Text] [Related] [New Search]