These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dietary Intake and Sources of Potassium and the Relationship to Dietary Sodium in a Sample of Australian Pre-School Children. Author: O'Halloran SA, Grimes CA, Lacy KE, Campbell KJ, Nowson CA. Journal: Nutrients; 2016 Aug 13; 8(8):. PubMed ID: 27529278. Abstract: The aim of this study was to determine the intake and food sources of potassium and the molar sodium:potassium (Na:K) ratio in a sample of Australian pre-school children. Mothers provided dietary recalls of their 3.5 years old children (previous participants of Melbourne Infant Feeding Activity and Nutrition Trial). The average daily potassium intake, the contribution of food groups to daily potassium intake, the Na:K ratio, and daily serves of fruit, dairy, and vegetables, were assessed via three unscheduled 24 h dietary recalls. The sample included 251 Australian children (125 male), mean age 3.5 (0.19) (SD) years. Mean potassium intake was 1618 (267) mg/day, the Na:K ratio was 1.47 (0.5) and 54% of children did not meet the Australian recommended adequate intake (AI) of 2000 mg/day for potassium. Main food sources of potassium were milk (27%), fruit (19%), and vegetable (14%) products/dishes. Food groups with the highest Na:K ratio were processed meats (7.8), white bread/rolls (6.0), and savoury sauces and condiments (5.4). Children had a mean intake of 1.4 (0.75) serves of fruit, 1.4 (0.72) dairy, and 0.52 (0.32) serves of vegetables per day. The majority of children had potassium intakes below the recommended AI. The Na:K ratio exceeded the recommended level of 1 and the average intake of vegetables was 2 serves/day below the recommended 2.5 serves/day and only 20% of recommended intake. An increase in vegetable consumption in pre-school children is recommended to increase dietary potassium and has the potential to decrease the Na:K ratio which is likely to have long-term health benefits.[Abstract] [Full Text] [Related] [New Search]