These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: N-Homocysteinylation impairs collagen cross-linking in cystathionine β-synthase-deficient mice: a novel mechanism of connective tissue abnormalities. Author: Perła-Kajan J, Utyro O, Rusek M, Malinowska A, Sitkiewicz E, Jakubowski H. Journal: FASEB J; 2016 Nov; 30(11):3810-3821. PubMed ID: 27530978. Abstract: Cystathionine β-synthase (CBS) deficiency, a genetic disorder in homocysteine (Hcy) metabolism in humans, elevates plasma Hcy-thiolactone and leads to connective tissue abnormalities that affect the cardiovascular and skeletal systems. However, the underlying mechanism of these abnormalities is not understood. Hcy-thiolactone has the ability to form isopeptide bonds with protein lysine residues, which generates N-homocysteinylated protein. Because lysine residues are involved in collagen cross-linking, N-homocysteinylation of these lysines should impair cross-linking. Using a Tg-I278T Cbs-/- mouse model of hyperhomocysteinemia (HHcy) which replicates the connective tissue abnormalities observed in CBS-deficient patients, we found that N-Hcy-collagen was elevated in bone, tail, and heart of Cbs-/- mice, whereas pyridinoline cross-links were significantly reduced. Plasma deoxypyridinoline cross-link and cross-linked carboxyterminal telopeptide of type I collagen were also significantly reduced in the Cbs-/- mice. Lysine oxidase activity and mRNA level were not reduced by the Cbs-/- genotype. We also showed that collagen carries S-linked Hcy bound to the thiol of N-linked Hcy. In vitro experiments showed that Hcy-thiolactone modifies lysine residues in collagen type I α-1 chain. Residue K160, located in the nonhelical N-telopeptide region and involved in pyridinoline cross-link formation, was also N-homocysteinylated in vivo Taken together, our findings showed that N-homocysteinylation of collagen in Cbs-/- mice impairs its cross-linking. These findings explain, at least in part, connective tissue abnormalities observed in HHcy.-Perła-Kajan, J., Utyro, O., Rusek, M., Malinowska, A., Sitkiewicz, E., Jakubowski, H. N-Homocysteinylation impairs collagen cross-linking in cystathionine β-synthase-deficient mice: a novel mechanism of connective tissue abnormalities.[Abstract] [Full Text] [Related] [New Search]