These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet. Author: Hong Y, Zhang J, Zeng XC. Journal: Phys Chem Chem Phys; 2016 Sep 21; 18(35):24164-70. PubMed ID: 27531348. Abstract: Interfacial thermal conductance plays a vital role in defining the thermal properties of nanostructured materials in which heat transfer is predominantly phonon mediated. In this work, the thermal contact resistance (R) of a linear heterojunction within a hybrid graphene/hexagonal boron nitride (h-BN) sheet is characterized using non-equilibrium molecular dynamics (NEMD) simulations. The effects of system dimension, heat flux direction, temperature and tensile strain on the predicted R values are investigated. The spatiotemporal evolution of thermal energies from the graphene to the h-BN sheet reveals that the main energy carrier in graphene is the flexural phonon (ZA) mode, which also has the most energy transmissions across the interface. The calculated R decreases monotonically from 5.2 × 10(-10) to 2.2 × 10(-10) K m(2) W(-1) with system lengths ranging from 20 to 100 nm. For a 40 nm length hybrid system, the calculated R decreases by 42% from 4.1 × 10(-10) to 2.4 × 10(-10) K m(2) W(-1) when the system temperature increases from 200 K to 600 K. The study of the strain effect shows that the thermal contact resistance R between h-BN and graphene sheets increases with the tensile strain. Detailed phonon density of states (PDOS) is computed to understand the thermal resistance results.[Abstract] [Full Text] [Related] [New Search]