These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-497-5p inhibits cell proliferation and invasion by targeting KCa3.1 in angiosarcoma.
    Author: Chen Y, Kuang D, Zhao X, Chen D, Wang X, Yang Q, Wan J, Zhu Y, Wang Y, Zhang S, Wang Y, Tang Q, Masuzawa M, Wang G, Duan Y.
    Journal: Oncotarget; 2016 Sep 06; 7(36):58148-58161. PubMed ID: 27531900.
    Abstract:
    Angiosarcoma is a rare malignant mesenchymal tumor with poor prognosis. We aimed to identify malignancy-associated miRNAs and their target genes, and explore biological functions of miRNA and its target in angiosarcoma. By miRNA microarrays and reverse transcription polymerase chain reaction, we identified 1 up-regulated miRNA (miR-222-3p) and 3 down-regulated miRNAs (miR-497-5p, miR-378-3p and miR-483-5p) in human angiosarcomas compared with human capillary hemangiomas. The intermediate-conductance calcium activated potassium channel KCa3.1 was one of the putative target genes of miR-497-5p, and marked up-regulation of KCa3.1 was detected in angiosarcoma biopsy specimens by immunohistochemistry. The inverse correlation of miR-497-5p and KCa3.1 also was observed in the ISO-HAS angiosarcoma cell line at the mRNA and protein levels. The direct targeting of KCa3.1 by miR-497-5p was evidenced by reduced luciferase activity due to complementary binding of miR-497-5p to KCa3.1 mRNA 3' untranslated region. For the functional role of miR-497-5p/KCa3.1 pair, we showed that application of TRAM-34, a specific KCa3.1 channel blocker, or transfection of ISO-HAS cells with KCa3.1 siRNA or miR-497-5p mimics inhibited cell proliferation, cell cycle progression, and invasion by down-regulating cell-cycle related proteins including cyclin D1, surviving and P53 and down-regulating matrix metallopeptidase 9. In an in vivo angiosarcoma xenograft model, TRAM-34 or miR-497-5p mimics both inhibited tumor growth. In conclusion, the tumor suppressor miR-497-5p down-regulates KCa3.1 expression and contributes to the inhibition of angiosarcoma malignancy development. The miR-497-5p or KCa3.1 might be potential new targets for angiosarcoma treatment.
    [Abstract] [Full Text] [Related] [New Search]