These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of the Uterine Epithelial and Conceptus Transcriptome and Luminal Fluid Proteome During the Peri-Implantation Period of Pregnancy in Sheep.
    Author: Brooks K, Burns GW, Moraes JG, Spencer TE.
    Journal: Biol Reprod; 2016 Oct; 95(4):88. PubMed ID: 27535962.
    Abstract:
    Studies support the idea that uterine epithelia and their secretions have important biological roles in conceptus survival, elongation, and implantation in sheep. The present study evaluated the transcriptome of the uterine luminal epithelium (LE) and glandular epithelium (GE) and the conceptus and proteome of uterine luminal fluid (ULF) during the peri-implantation period of pregnancy. Transcriptome (RNA-sequencing) analysis was conducted in LE and GE isolated from uteri of Day 10, 12, 14, 16, and 20 pregnant sheep by laser capture microdissection. In the LE, the total number of expressed genes increased between Days 10 and 20, whereas expressed genes in the GE increased from Days 10 to 14 and then decreased to Day 20. Most of the expressed genes in LE and GE from Days 10 to 14 are involved in cell survival and growth, whereas genes involved in cell organization and protein synthesis were most abundant on Days 16 and 20. Total expressed genes in the conceptus was greatest on Day 12, decreased to Day 16, and then increased to Day 20. Genes abundantly expressed in the elongating conceptus included IFNT, PTGS2, MGST1, FADS1, and FADS2, whereas SERPINA1, CSH1, and PLET1 were most abundant in the Day 20 conceptus. Proteins, identified by mass spectrometry, increased in the ULF from Days 10 to 16 and are involved in cellular reorganization or are proteases or chaperone proteins. These results support the idea that conceptus elongation and implantation is regulated by both extrinsic and intrinsic factors. This study provides critical information that serves as a foundation to discover new regulatory pathways governing uterine receptivity, conceptus elongation, trophectoderm differentiation, conceptus-endometrial interactions, and pregnancy establishment in ruminants.
    [Abstract] [Full Text] [Related] [New Search]