These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Temporal and spatial variability of chemical and isotopic composition of soil solutions from cambisols - field study and experiments.
    Author: Schön W, Mittermayr F, Leis A, Mischak I, Dietzel M.
    Journal: Sci Total Environ; 2016 Dec 01; 572():1066-1079. PubMed ID: 27542629.
    Abstract:
    The chemical and isotopic composition of soil solutions is highly relevant for environmental and forensic tasks. We investigated interstitial solutions from soil horizons of three cambisols in Styria (Austria). The soils consisted mainly of quartz, feldspar and clay minerals with a vertical variability. Two soil solution fractions from meso-, macro- and micropores (m) and micropores only (μ) were extracted at two subsequent hydraulic pressure steps corresponding to matrix potentials of up to pF 5.43 and from 5.43 to 5.73, respectively. While solute concentrations indicated diverse distribution in soil solution fractions m and μ, heavy stable hydrogen and oxygen isotopes of H2O (-92.5‰<δ2H<-34.4‰; -11.9‰<δ18O<-4.0‰, VSMOW) are clearly enriched in the μ versus m fractions. Principal component analysis on the hydrochemical data set indicates that the intensity of the overall silicate weathering is higher in autumn versus spring, whereas the anthropogenic impact on weathering behaves inversely. The anthropogenic impact is related to seasonal variability of nitrification of N-fertilizers. In consequence of evaluated signals for overall silicate weathering about three-fourths of the soil solutions sampled in autumn indicated elevated total dissolved solid concentration vs. those in spring accompanied with washing out solutes from the soil cover following precipitation events in autumn before sampling. Isotopic shift of soil solutions from the local meteoric water line in spring obviously followed an evaporation trend because of less precipitation and high evaporation before sampling. Experimentally simulated evaporation of soil samples confirmed the observed isotopic evaporation trend. Wetting experiments indicated the infiltration of water within minutes into the micropores of the soils. Exchange of water molecules between micro-, meso- and macropores is an almost instantaneous process and soil solutions in micropores are not as isolated from the soil water system as it was formerly suggested, e.g. for plant uptake. Highly dynamic and complex mechanisms in the gas-water-solid system of soils have to be considered for the application of elemental and isotope proxies related to environmental, forensic and agricultural tasks.
    [Abstract] [Full Text] [Related] [New Search]